ACADEMIC SESSION: 2025-26

5 TH	Sri Shailesh Kumar Nayak, Lecturer Stage-II (ETC)
Nos. of days /	Semester wef: 14.07.2025 to 15.11.2025
week class	Nos. of Weeks per Semester: 15
allotted: 05	
Class Day	Theory/ Practical Topics
1st	Basics of Digital Electronics
	Binary, Octal, Hexadecimal number systems and compare with Decimal system.
2 nd	Binary, Octal, Hexadecimal number systems and compare with Decimal system.
3rd	Binary addition, subtraction, Multiplication and Division.
4th	Binary addition, subtraction, Multiplication and Division.
5 th	1's complement and 2's complement numbers for a binary number
1st	Subtraction of binary numbers in 2's complement method.
2 nd	Use of weighted and Un-weighted codes & write Binary equivalent number
	for a number in 8421, Excess-3 and Gray Code and vice-versa.
3rd	Use of weighted and Un-weighted codes & write Binary equivalent number
	for a number in 8421, Excess-3 and Gray Code and vice-versa.
4th	Importance of parity Bit.
5th	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.
1st	Realize AND, OR, NOT operations using NAND, NOR gates.
2 nd	Different postulates and De-Morgan's theorems in Boolean algebra.
3rd	Use of Boolean Algebra for Simplification of Logic Expression
4th	Karnaugh Map For 2,3,4 Variable, Simplification of SOP And POS Logic
	Expression Using K-Map
5th	Karnaugh Map For 2,3,4 Variable, Simplification of SOP And POS Logic
	Expression Using K-Map
1st	Give the concept of combinational logic circuits.
	Half adder circuit and verify its functionality using truth table.
	Realize a Half-adder using NAND gates only and NOR gates only.
	Realize a Half-adder using NAND gates only and NOR gates only.
	Full adder circuit and explain its operation with truth table.
	Realize full-adder using two Half-adders and an OR – gate and write truth table
	Realize full-adder using two Half-adders and an OR – gate and write truth table
	Full subtractor circuit and explain its operation with truth table.
	Full subtractor circuit and explain its operation with truth table.
	Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer
	Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer
	Working of Binary-Decimal Encoder & 3 X 8 Decoder.
	Working of Binary-Decimal Encoder & 3 X 8 Decoder.
	Working of Two bit magnitude comparator
	Working of Two bit magnitude comparator
	Give the idea of Sequential logic circuits.
	Chate the page entry of clock and give the concept of level clocking and edge
Zna	State the necessity of clock and give the concept of level clocking and edge
0-4	triggering,
3rd 4th	Clocked SR flip flop with preset and clear inputs. Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
	THE SPORTER OF TOUCH CLOCKED IN THE HOUSE IN THE STATE THE SHOULD ABOUT EXCICUL WHILL HAVE LADIO
	Nos. of days / week class allotted: 05 Class Day 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd

	1st	Give the truth tables of edge triggered D and T flip flops and draw their symbol
8тн	2nd	Applications of flip flops.
	3rd	Define modulus of a counter
	4th	4-bit asynchronous counter and its timing diagram.
	5 th	Asynchronous decade counter.
дтн	1st	4-bit synchronous counter.
	2 nd	Distinguish between synchronous and asynchronous counters.
	3rd	State the need for a Register and list the four types of registers.
	4th	Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.
	5 th	Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.
10тн	1st	Introduction to Microprocessors, Microcomputers
	2nd	Architecture of Intel 8085A Microprocessor and description of each block.
	3rd	Architecture of Intel 8085A Microprocessor and description of each block
	4th	Pin diagram and description.
	5th	Pin diagram and description.
11 TH	1st	Stack, Stack pointer & stack top,
	2 nd	Interrupts
	3rd	Opcode & Operand,
	4th	Differentiate between one byte, two byte & three byte instruction with example
	5 th	Instruction set of 8085 example
	1st	Instruction set of 8085 example
	2nd	Addressing mode
12тн	3rd	Fetch Cycle, Machine Cycle, Instruction Cycle, T-State
12		Timing Diagram for memory read, memory write, I/O read, I/O write
	5 th	Timing Diagram for 8085 instruction
13 TH	1sf	Timing Diagram for 8085 instruction
	2nd	Counter and time delay.
	3rd	Simple assembly language programming of 8085
	4th	Simple assembly language programming of 8085
	5th	Simple assembly language programming of 8085
	1st	Basic Interfacing Concepts
14 TH	2nd	
	3rd	Memory mapping & I/O mapping
		Memory mapping & I/O mapping Functional block diagram and description of each block of Programmable
	4 th	
	Eth	peripheral interface Intel 8255,
	5 th	Functional block diagram and description of each block of Programmable
3 40.45	Act	peripheral interface Intel 8255,
	1st	Functional block diagram and description of each block of Programmable
	Ond	peripheral interface Intel 8255,
	2nd	Application using 8255: Seven segment LED display, Square wave generator,
15 TH	0-1	Traffic light Controller
	3rd	Application using 8255: Seven segment LED display, Square wave generator,
	10	Traffic light Controller
	4th	Application using 8255: Seven segment LED display, Square wave generator,
		Traffic light Controller
	5 th	Review and Previous Year-Question Discussion

S. K. Nayak
Lecturer Stage-II (ETC)
GP Sonepur

Electrical Engineering
GP Sonepur

Academie (Co-ordinator)

