ACADEMIC SESSION: 2024-25

Discipline:	Semester:	Name of the Teaching Faculty : Tilu Behera
_ jetrical ,	5 th	
Engineering		04 07 70244 00 41 2024
Subject : Digital	No. of days /	Semester From date: 01-07-2024 to 08-11-2024
Electronics &	week class	Nos. of Weeks per semester: 15
Microprocessor	allotted: 5	
Week	Class Day	Theory/ Practical Topics
	1 st	Binary, Octal, Hexadecimal number systems
	2 nd	Compare Binary, Octal, Hexadecimal number systems with Decimal system
1 st	3 rd	Binary addition, subtraction
	4 th	Binary Multiplication and Division.
	5 th	1's complement and 2's complement numbers for a binary number
	1 st	Subtraction of binary numbers in 2's complement method.
2 ND	2 nd	Use of weighted and Un-weighted codes
	3 rd	write Binary equivalent number for a number in 8421, Excess-3 and Gray
	l v	Code and vice-versa.
	4 th	Importance of parity Bit.
	5 th	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.
O. Law	1 st	Realize AND, OR, NOT operations using NAND, NOR gates.
• , -	2 nd	Different postulates and De-Morgan's theorems in Boolean algebra.
3 RD	3 rd	Use Of Boolean Algebra For Simplification Of Logic Expression
	4 th	Karnaugh Map For 2,3,4 Variable
	5 th	Simplification Of SOP And POS Logic Expression Using K-Map
	1 st	Give the concept of combinational logic circuits
	2 nd	Half adder circuit and verify its functionality using truth table.
	3 rd	Realize a Half-adder using NAND gates only and NOR gates only.
4 TH	4 th	Full adder circuit and explain its operation with truth table.
	5 th	Realize full-adder using two Half-adders and an OR – gate and write truth
	3	table
5 TH	1 st	Full subtractor circuit and explain its operation with truth table.
	2 nd	Operation of 4 X 1 Multiplexers
	3 rd	Operation of 1 X 4 Demultiplexer
	4 th	Working of Binary-Decimal Encoder
	5 th	Working of 3 X 8 Decoder.
	1 st	Working of Two bit magnitude comparator.
	2 nd	Give the idea of Sequential logic circuits.
	3 rd	State the necessity of clock and give the concept of level clocking and edge
	3	triggering,
	4 th	Clocked SR flip flop with preset and clear inputs.
	5 th	Construct level clocked JK flip flop using S-R flip-flop and explain with truth
		table
7 ^{тн}	1 st	Concept of race around condition and study of master slave JK flip flop.
	2 nd	Give the truth table of edge triggered D flip flop and draw it's symbol.
	3 rd	Give the truth table of edge triggered T flip flop and draw it's symbol.
	4 th	Applications of flip flops.
	5 th	Define modulus of a counter

5.
5.
each block.
each block.
tion with
rammable
allillable

Prepared By
Tilu Behera
Lecturer in Electronics
GP Sonepur

Head of the Department
Electrical Engineering
GP Sonepur

Academic Coordinator
GP Sonepur