ACADEMIC SESSION: 2023-24

Discipline : Electrical Engineering	Semester: 5 th	Name of the Teaching Faculty: Tilu Behera
Subject : Digital	No. of days / week	Semester From date: 01/08/23 to 30/11/2023
Electronics & Microprocessor	class allotted	Nos. of Weeks per semester : 15
Week	Class Day	Theory/ Practical Topics
1 ST	1 st	Binary, Octal, Hexadecimal number systems
	2 nd	CompareBinary, Octal, Hexadecimal number systems with Decimal system
	3 rd	Binary addition, subtraction
	4 th	Binary Multiplication and Division.
	5 th	1.'s complement and 2's complement numbers for a binary number
	1 st	Subtraction of binary numbers in 2's complement method.
		Use of weighted and Un-weighted codes
	2 nd	
	3 rd	write Binary equivalent number for a number in 8421, Excess-3 and
	4 ^{tn}	Gray Code and vice-versa.
		Importance of parity Bit.
	5 th	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.
3 RD	1 st	Realize AND, OR, NOT operations using NAND, NOR gates.
	2 nd	Different postulates and De-Morgan's theorems in Boolean algebra.
	3 rd	Use Of Boolean Algebra For Simplification Of Logic Expression
*	4 th	Karnaugh Map For 2,3,4 Variable
	5 th	Simplification Of SOP And POS Logic Expression Using K-Map
4 TH	1 st	Give the concept of combinational logic circuits
	2 nd	Half adder circuit and verify its functionality using truth table.
	3 rd	Realize a Half-adder using NAND gates only and NOR gates only.
	4 th	Full adder circuit and explain its operation with truth table.
	5 th	Realize full-adder using two Half-adders and an OR – gate and write truth table
5 TH	1 st	Full subtractor circuit and explain its operation with truth table.
	2 nd	Operation of 4 X 1 Multiplexers
	3 rd	Operation of 1 X 4 Demultiplexer
	4 th	Working of Binary-Decimal Encoder
	5 th	Working of 3 X 8 Decoder.
	1 st	Working of Two bit magnitude comparator.
6 [™]	2 nd	Give the idea of Sequential logic circuits.
	3 rd	
	3	State the necessity of clock and give the concept of level clocking and edge triggering,
	4 th	Clocked SR flip flop with preset and clear inputs.
	5 th	
		Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
7 TH	1 st	Concept of race around condition and study of master slave JK flip flop.
	2 nd	Give the truth table of edge triggered D flip flop and draw it's symbol
	3 rd	Give the truth table of edge triggered Tflip flop and draw it's symbol.
	4 th	Applications of flip flops.
	5 th	Define modulus of a counter

N.	1 st	3-bit asynchronous counter and its timing diagram.
	2 nd	4-bit asynchronous counter and its timing diagram.
8 TH	3 rd	Asynchronous decade counter.
	4 th	4-bit synchronous counter.
,	5 th	Distinguish between synchronous and asynchronous counters.
	1 st	State the need for a Register and list the four types of registers.
**	2 nd	Working of SISO Register with truth table using flip flop.
9 TH	3 rd	Working of SIPO Register with truth table using flip flop.
	4 th	Working of PISO Register with truth table using flip flop.
	5 th	Working of PIPO Register with truth table using flip flop.
	1 st	Introduction to Microprocessors, Microcomputers
	2 nd	Architecture of Intel 8085A Microprocessor and description of each block.
10 TH	3 rd	Architecture of Intel 8085A Microprocessor and description of each block.
	4 th	Pin diagram and description.
	5 th	Pin diagram and description.
	1 st	Stack, Stack pointer & stack top
	2 nd	Interrupts
	3 rd	Opcode & Operand,
11 TH	4 th	Differentiate between one byte, two byte & three byte instruction with example.
	5 th	Instruction set of 8085 example
	1 st	Instruction set of 8085 example
,	2 nd	Addressing mode
12 th	3 rd	Addressing mode
, , , , , , , , , , , , , , , , , , ,	4 th	Fetch Cycle, Machine Cycle, Instruction Cycle, T-State
_	5 th	Timing Diagram for memory read, memory write
	1 st	Timing Diagram for I/O read, I/O write
	2 nd	Timing Diagram for 8085 instruction
13 th	3 rd	Problems on Timing Diagram for 8085 instruction
	4 th	Counter and time delay.
	5 th	Simple assembly language programming of 8085
	1 st	Question Discussion
	2 nd	Question Discussion
	3 rd	Question Discussion
14 th	4 th	Basic Interfacing Concepts, Memory mapping & I/O mapping
	5 th	Functional block diagram and description of each block of
	3	Programmable peripheral interface Intel 8255
	1 st	Application using 8255: Seven segment LED display
-	2 nd	Application using 8255: Square wave generator
15 th	3 rd	
13	4 th	Application using 8255: Traffic light Controller
-	5 th	Question Discussion
	5	Question Discussion

Prepared By
Tilu Behera
Lecturer in Electronics
GP Sonepur

Head of the Department Electrical Engineering GP Sonepur

Academic Co-ordinator

GP Sonepur